• 新闻与活动

    学术成果

Boosting the predictive performance with aqueous solubility dataset curation

Scientific Data volume 9, Article number: 71 (2022)

Intrinsic solubility is a critical property in pharmaceutical industry that impacts in-vivo bioavailability of small molecule drugs. However, solubility prediction with Artificial Intelligence(AI) are facing insufficient data, poor data quality, and no unified measurements for AI and physics-based approaches. We collect 7 aqueous solubility datasets, and present a dataset curation workflow. Evaluating the curated data with two expanded deep learning methods, improved RMSE scores on all curated thermodynamic datasets are observed. We also compare expanded Chemprop enhanced with curated data and state-of-art physics-based approach using pearson and spearman correlation coefficients. A similar performance on pearson with 0.930 and spearman with 0.947 from expanded Chemprop is achieved. A steadily improved pearson and spearman values with increasing data points are also illustrated. Besides that, the computation advantage of AI models enables quick evaluation of a large set of molecules during the hit identification or lead optimization stages, which helps further decision making within the time cycle at drug discovery stage.

想继续了解更多?

联系我们

我们期待您的留言

让我们知道如何为您提供帮助,我们团队将24小时内与您联系!

姓名
电话
邮箱
国家/地区
北京市
天津市
上海市
重庆市
河北省
山西省
辽宁省
吉林省
黑龙江省
江苏省
浙江省
安徽省
福建省
江西省
山东省
河南省
湖北省
湖南省
广东省
海南省
四川省
贵州省
云南省
陕西省
甘肃省
青海省
台湾省
内蒙古自治区
广西壮族自治区
西藏自治区
宁夏回族自治区
新疆维吾尔自治区
香港特别行政区
澳门特别行政区
从事行业
小分子药物研发
抗体药物研发
CRO/CDMO
投融资机构
高校/研究院所/医院
园区
生物医药产业
感兴趣的业务
小分子药物发现
抗体药物发现
药物固体形态研发
化学合成服务(含自动化合成)
实验室自动化解决方案
所在公司
是否需要业务人员跟进?
暂不需要
验证码

我已阅读并同意 yl23455永利官网隐私政策法律声明