• 新闻与活动

    学术成果

Guiding Lead Optimization for Solubility Improvement with Physics-Based Modeling

Mol. Pharmaceutics 2020, 17, 2, 666–673 Publication Date:January 13, 2020

Although there are a number of computational approaches available for the aqueous solubility prediction, a majority of those models rely on the existence of a training set of thermodynamic solubility measurements or/and fail to accurately account for the lattice packing contribution to the solubility. The main focus of this study is the validation of the application of a physics-based aqueous solubility approach, which does not rely on any prior knowledge and explicitly describes the solid-state contribution, in order to guide the improvement of poor solubility during the lead optimization. A superior performance of a quantum mechanical (QM)-based thermodynamic cycle approach relative to a molecular mechanical (MM)-based one in application to the optimization of two pharmaceutical series was demonstrated. The QM-based model also provided insights into the source of poor solubility of the lead compounds, allowing the selection of the optimal strategies for chemical modification and formulation. It is concluded that the application of that approach to guide solubility improvement at the late discovery and/or early development stages of the drug design proves to be highly attractive.

想继续了解更多?

联系我们

我们期待您的留言

让我们知道如何为您提供帮助,我们团队将24小时内与您联系!

姓名
电话
邮箱
国家/地区
北京市
天津市
上海市
重庆市
河北省
山西省
辽宁省
吉林省
黑龙江省
江苏省
浙江省
安徽省
福建省
江西省
山东省
河南省
湖北省
湖南省
广东省
海南省
四川省
贵州省
云南省
陕西省
甘肃省
青海省
台湾省
内蒙古自治区
广西壮族自治区
西藏自治区
宁夏回族自治区
新疆维吾尔自治区
香港特别行政区
澳门特别行政区
从事行业
小分子药物研发
抗体药物研发
CRO/CDMO
投融资机构
高校/研究院所/医院
园区
生物医药产业
感兴趣的业务
小分子药物发现
抗体药物发现
药物固体形态研发
化学合成服务(含自动化合成)
实验室自动化解决方案
所在公司
是否需要业务人员跟进?
暂不需要
验证码

我已阅读并同意 yl23455永利官网隐私政策法律声明